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1 Introduction

The Relativistic Heavy Ion Collider (RHIC) collides gold nuclei at
√
sNN = 200 GeV. This

means that each nucleus has energy E = 100 GeV per nucleon, for a total of about 19.7 TeV
for each nucleus. The total number of charged particles Ncharged that emerge from such a
collision can be as large as 5000: see for example [1]. In [2] we pointed out that this number
can be approximately reproduced starting from collisions of gravitational shock waves [3–12]
in AdS5, following the methods of the gauge-string duality [13–15] and identifying the total
energy of each nucleus with the energy of the corresponding shock wave. The calculations
of [2] rely upon finding a marginally trapped surface in the five-dimensional geometry and
using its area to put a lower bound on the entropy of the black hole produced from the
collision, following the general plan of [16–19]. In [2], we translated this entropy bound
into an approximate lower bound on Ncharged using a fairly well established relation,1

S ≈ 7.5Ncharged , (1.1)

between Ncharged and the entropy S produced in a heavy-ion collision [20–24]. A virtue of
the trapped surface calculation is that there are no free parameters: the gauge coupling

1The simplest justification for this relation is that it holds, approximately, for a thermally equilibrated

gas of non-interacting hadrons at temperatures just below the transition temperature Tc ≈ 170 MeV of

QCD [20–22].
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doesn’t enter to leading order in a strong coupling expansion, and the overall normalization
of the entropy is fixed by the equation of state for static plasmas (see for example [25]). On
the downside, the predicted lower bound on Ncharged scales as s1/3NN, which is a faster energy
dependence than the s1/4NN scaling predicted by the Landau model [26] and largely obeyed
by the data. Since the trapped surface computation gives a lower bound on the entropy
produced, there is no conflict between [2] and experiment—so far. Conflict will arise if the
growth of Ncharged remains slower than s

1/3
NN significantly above

√
sNN = 200 GeV.

In this paper we have two main aims. First, we want to generalize the methods of [2]
to handle off-center collisions of gravitational shock waves in AdS5. Our generalization
amounts to giving an approximate answer to a well-posed question: What is the area of
the marginally trapped surface lying on the past light-cone of the shock waves? The answer,
for trapped surfaces that are significantly bigger2 than the radius of AdS5, is

Atrapped = 4πG5

(
4E2z2

∗
G5/L3

)1/3 sinh−1 β

β
√

1 + β2
, (1.2)

where z∗ is a characteristic transverse length scale, and β = b/2z∗ is an AdS5 version of
the impact parameter. A more general version of (1.2) appears as (3.21) (see also (3.23))
and represents our main analytic result.

With (1.2) in hand, the standard entropy estimate for the black hole created in the
collision is

S ≥ Strapped ≡
Atrapped

4G5
=
(

4E2z2
∗

G5/L3

)1/3 sinh−1 β

β
√

1 + β2
. (1.3)

Using (1.1) and fixing parameters in the same way as in [2], we can obtain approximate
lower bounds on Ncharged and compare them with heavy-ion data — or, more precisely,
to heavy-ion data as interpreted using the Glauber model. We find that our bound on
Ncharged has a significantly weaker dependence on the impact parameter than what data
plus Glauber indicates for quantum chromodynamics (QCD). This result, coupled with the
s
1/3
NN dependence of the bound on Ncharged from trapped surface calculations, may indicate

that the agreement found in [2] was to some extent fortuitous — or that the best motivated
mapping between quantities in QCD and quantities in a strongly coupled field theory is
more subtle than we proposed in [2]. In fact, we find a substantially improved fit to
the data by identifying the energy of each shock wave with the fraction of the energy of
the nucleus carried by nucleons that participate in the collision.3 Figure 5 shows how
our total multiplicity estimates compare with data from PHOBOS [27] with the original
identification of energy as the total energy of the nucleus. Figure 6 shows the improved fit
obtained from the rescaled energy.

Our second aim is to inquire how our calculations might change if we took into account
the non-conformal nature of QCD. It’s probably because QCD confines that we have to

2More precisely, a sufficient condition for equation (1.2) to be a good approximation is that ζ ≡`
2Ez∗

G5
L3

´1/3 � 1 and β � ζ.
3We thank B. Cole, J. Noronha, P. Steinberg, and B. Zajc for suggesting this approach.

– 2 –



J
H
E
P
1
1
(
2
0
0
9
)
0
5
0

exclude the energy of the non-participating nucleons before we get good agreement between
AdS/CFT calculations and total multiplicity data. We are led to ask, is there a less
contrived way of including the effects of confinement? Low-energy processes in QCD should
not contribute as much entropy as in a conformal theory: the reason is that the number of
degrees of freedom decreases dramatically below the confinement transition. To incorporate
this in our trapped surface calculation, we discard the part of the trapped surface below a
certain fixed depth, corresponding to an infrared cutoff. Also, for sufficiently high energies,
asymptotic freedom dictates that interactions become weaker and weaker. So it seems safe
to say that there is not as much entropy production from hard processes in QCD as there
is in a strongly coupled conformal theory. Correspondingly, we slice away the part of the
trapped surface which is above a fixed depth, corresponding to an ultraviolet cutoff. In
summary: we go back to identifying the energy of the shock wave with the total energy of
the nucleus; we find the trapped surface in pure AdS5 without any cutoffs; and finally, we
slice away both the ultraviolet and infrared parts of the trapped surface before converting
its area to an estimate of the entropy produced in the collision.

This slicing approach is distinct from a hard-wall construction of a holographic dual
of QCD in that the shape of the trapped surface doesn’t respond in any way to the cutoffs.
This approach is admittedly naive. Our main defense of it is to note that it is still more
naive to neglect violations of conformal invariance altogether. In a proper treatment,
we should replace the infrared cutoff with a holographic renormalization group flow to a
confining theory whose equation of state matches that of QCD: see for example [28, 29] for
work along these lines. The ultraviolet cutoff should in principle be replaced with some
hybrid description where Einstein gravity rolls over into perturbative quantum field theory
as one approaches the boundary of AdS5.

The slicing approach described in the previous paragraph leads to a s1/6NN scaling of the
lower bound on Ncharged at large energies. Heavy ion collisions at the LHC may be able to
probe this scaling.

Our analysis is hardly the only attempt at relating heavy-ion collisions to black hole
formation from collisions of gravitational shock waves in AdS5. Other work along these
lines includes [2, 11, 30–34] and references therein. One hazard of our calculation is that
black hole formation is complicated, and it’s not clear whether the inequality S ≥ Strapped

is close to being saturated. That is, the final entropy of the black hole may be much larger
than the lower bound we find. For collisions in flat space, the recent study [35] suggests that
it is not: instead one has S & 1.5Strapped, where the inequality is approximately saturated
in the limit of ultra-relativistic collisions, and Strapped is based on the canonical choice of
trapped surface, analogous to the one we use. Another hazard is that heavy-ion collisions
are a multi-scale process involving both perturbative and non-perturbative dynamics. A
supergravity treatment of an AdS5 dual can at best give us a reliable handle only on the
range of energy scales where QCD is deconfined but still strongly coupled. Slicing away
parts of AdS5 is a poor man’s approach to dealing with the non-conformal nature of QCD.

The rest of this paper is organized as follows. In section 2 we describe the shock wave
solutions we need and exhibit a helpful O(2) symmetry of the collision. In section 3 we
find the shape of the trapped surface in a limit where the size of the surface is much larger
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than the radius of AdS5. In section 4 we use the optical Glauber method to relate our
gravity computations to the experimental results of [36]. In section 5 we describe in detail
our approach of slicing off the UV and IR parts of the trapped surface to obtain a revised
estimate of Ncharged that accounts, albeit crudely, for the non-conformal behavior of QCD.
We end with a discussion of our results in section 6.

When this paper was nearing completion, we received [37], which has some overlap
with our results. We will comment on the relation between our results and the ones in [37]
at the end of section 3. We also received [38], which takes a somewhat different approach
to shock wave collisions in AdS5, following the earlier work [33].

2 Shock waves from point particles

Point-like massless particles moving in AdS5 generate gravitational shock waves: they are
sources for the geometry in the sense that the five-dimensional stress-energy tensor has
delta-function support on null geodesics. From the boundary point of view, a collision
of two such particles will correspond to a collision of localized energetic objects which
we take to be nuclei. In section 2.1 we discuss the shock wave geometries before the
collision and explain their field theory interpretation. Most of the material in this section
is more thoroughly reviewed in [2], where references to the original literature are also
given. In section 2.2 we introduce coordinate systems that make the symmetries of the
problem manifest. We show, among other things, how conformal symmetry relates off-
center collisions to collisions of objects of unequal size.

2.1 Shock wave geometries

Particles in AdS5 can be described by the action

S =
1

16πG5

∫
d5x
√
g

[
R+

12
L2

]
+
∫
dη

[
1
2e
gµν

dxµ∗
dη

dxν∗
dη
− e

2
m2

]
, (2.1)

where xµ = xµ∗ (η) is the trajectory of the particle, m is its mass, η is an arbitrary
parametrization of the worldline, and e is the worldline one-bein. We of course set m = 0.
Ignoring the back-reaction of the particle, the geometry is pure AdS5:

ds2AdS5
=
L2

z2

[
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 + dz2

]
, (2.2)

and the particle’s trajectory is a null geodesic in this geometry. The momentum conjugate
to xµ∗ is

pµ =
1
e
gµν

dxν∗
dη

. (2.3)

Because of the translation symmetry in the xm directions, where m runs from 0 to 3, the
quantities pm are conserved. They can be identified as the flat space four-momentum in
the gauge theory. Let’s focus on a particle whose trajectory is

x0
∗ = x3

∗ = t x1
∗ = x2

∗ = 0 z∗ = constant . (2.4)
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Then we have

pm = (−E, 0, 0, E) , (2.5)

where E is the energy of the particle. Introducing the light-cone coordinates

x± = x0 ± x3 p± =
1
2

(p0 ± p3) , (2.6)

one finds from (2.5) that p− = −E. We may choose η = t as the worldline parameter.
Then from (2.3) one finds that e = 1

E
L2

z2
.

Now let’s add in the back-reaction. The Einstein equations following from (2.1) are

Rµν −
1
2
gµνR−

6
L2
gµν = 8πG5Jµν , (2.7)

where

Jµν =
∫
dη

e√
−g

δ5(xµ − xµ∗ (η))pµpν (2.8)

is the stress tensor of the particle. Using light-cone coordinates, the only non-zero compo-
nent of Jµν is

J−− = E
z3

L3
δ(x1)δ(x2)δ(z − z∗)δ(x−) . (2.9)

Plugging the ansatz

ds2 = ds2AdS5
+
L

z
Φ(x1, x2, z)δ(x−)(dx−)2 (2.10)

into (2.7), one finds that the only non-trivial equation is the −− equation, which reads(
∇2
H3
− 3
L2

)
Φ = −16πG5E

z4

L4
δ(x1)δ(x2)δ(z − z∗) , (2.11)

where

∇2
H3

=
z2

L2

[(
∂

∂x1

)2

+
(

∂

∂x2

)2

+
∂2

∂z2

]
− z

L2

∂

∂z
(2.12)

is the laplacian on H3, whose line element is

ds2H3
=
L2

z2

[
(dx1)2 + (dx2)2 + dz2

]
. (2.13)

The differential equation (2.11) is subject to the boundary condition that Φ → 0 as one
approaches the boundary of H3. This is equivalent to requiring the perturbation of the
metric to vanish at the boundary, meaning that the shock wave describes a state in the
dual field theory rather than a deformation of the lagrangian.

Reducing the full non-linear Einstein equations in five dimensions to a single linear
differential equation on H3 is a drastic simplification. It is important to realize that no
linearized approximation is needed to derive (2.11): a solution to it leads to an exact
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solution of the Einstein equations. Only, because δ(x−) is involved in the metric (2.10), it
is a solution in the sense of distributions.

The solution to (2.11) is

Φ =
G5Ez∗

8L2

1
q3

2F1(3, 5/2; 5;−1/q) , (2.14)

where

q =
(x1)2 + (x2)2 + (z − z∗)2

4zz∗
, (2.15)

and 2F1(a, b; c; z) is the hypergeometric function. The particular hypergeometric function
in (2.14) has a closed form expression which is algebraic in q, but its explicit form is not
very illuminating. The geodesic distance (in H3) from the point (0, 0, z∗) to where the
point-source is located is ` = 2L sinh−1√q. Thus, the solution to (2.11) is invariant under
O(3). This O(3) is a subgroup of the isometry group of H3, which is O(3, 1)/Z2.4

One may extract an expectation value for the gauge theory stress tensor dual to the
point source by using a standard expression for one-point functions:

〈T−−〉 =
L2

4πG5
δ(x−) lim

z→0

Φ(x1, x2, z)
z3

=
2Ez4

∗
π(x2

⊥ + z2
∗)3

δ(x−) , (2.16)

where x⊥ = (x1, x2) parameterizes the plane transverse to the collision. All other compo-
nents of 〈Tmn〉 vanish. One can straightforwardly check from (2.16) that∫

d3x 〈T−−〉 = E and
∫
d3xx2

⊥〈T−−〉∫
d3x 〈T−−〉

= z2
∗ . (2.17)

The first equality shows that E is the total energy of one shock wave in the gauge theory, as
it is in the gravitational description. The second equality shows that the energy-weighted
root-mean-square size of the distribution (2.16) is z∗. This is an elementary example of the
relation between depth in AdS5 and size in the dual field theory.

Now consider an off-center collision of two shocks, where the trajectories of the point
sources take the form

x3 = ∓x0 x1 = b± x2 = 0 z = z± . (2.18)

A straightforward choice would be to set b± = ±b/2 and z+ = z− = z∗: then we would
be colliding an energy distribution like (2.16) with another one of the same size going the
other way. But we can just as easily consider z+ 6= z−, which means that we are colliding
energy distributions with different transverse sizes.

Causality dictates that the gravitational shocks generated by these particles cannot
affect one another outside the future light-cone of the collision point. So one must be able

4O(3, 1) has four connected components. In the hyperboloid coordinates, to be introduced in (2.29), the

Z2 we divide by acts as X−1 → −X−1. Dividing by an additional Z2 acting as parity on the remaining

coordinates would give SO(3, 1).

– 6 –
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to superpose them to obtain an exact (distributional) solution of the Einstein equations
which holds provided x+ < 0 or x− < 0:

ds2 = ds2AdS5
+
L

z
Φ−(x1, x2, z)δ(x−)(dx−)2 +

L

z
Φ+(x1, x2, z)δ(x+)(dx+)2 . (2.19)

By the same calculations that led to (2.14), one finds

Φ± =
G5E±z±

8L2

1
q3±

2F1(3, 5/2; 5;−1/q±) . (2.20)

Here E+ and E− are the energies of the two shock waves, which we do not assume to be
equal. The quantities q± are the chordal distances between a given point (x1, x2, z) and
the location (b±, 0, z±) of the shocks:

q± =
(x1 − b±)2 + (x2)2 + (z − z±)2

4zz±
. (2.21)

Passing through the calculations that led to (2.16), one finds that the gauge-theory shock
wave moving in the +x3 direction generates a boundary theory stress-energy tensor

〈T−−〉 =
2E−z4

−

π
[
(x1 − b−)2 + (x2)2 + z2

−
]3 δ(x−) , (2.22)

and the shock moving in the −x3 direction generates

〈T++〉 =
2Ez4

+

π
[
(x1 − b+)2 + (x2)2 + z2

+

]3 δ(x+) . (2.23)

While it is difficult to see it in the Poincaré coordinate system, the two-shock geome-
try (2.19) has an O(2) symmetry. In the following subsection we use a different coordinate
system which makes this symmetry explicit and will also make it easier to deal with colli-
sions of unequal-sized energy distributions in the boundary theory.

2.2 Symmetries of the collision

In (2.2) and (2.6), we have introduced the Poincaré patch coordinates for AdS5 and our
conventions for light-cone coordinates. However, the O(4, 2) conformal symmetry becomes
more transparent if one uses the hyperboloid coordinates XM in R4,2, which are subject
to the constraint

−
(
X−1

)2 − (X0
)2 +

(
X1
)2 +

(
X2
)2 +

(
X3
)2 +

(
X4
)2 = −L2. (2.24)

By using

X−1 =
z

2

(
1 +

L2 + ~x2 − (x0)2

z2

)
Xm = L

xm

z

X4 =
z

2

(
−1 +

L2 − ~x2 + (x0)2

z2

)
, (2.25)

– 7 –
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we see that the metric inherited on this hypersurface from the standard flat metric on R4,2

is the same as (2.2).5

The most general collision we will consider is that of two shock waves whose point
sources follow the trajectories

X0 = ∓X3 X1 = ±Lβ cos a X2 = 0 X4 = ±Lβ sin a X−1 = L
√

1 + β2 .

(2.26)
Here β is a dimensionless AdS5 version of the impact parameter. Changing a evi-
dently amounts to a conformal transformation in the gauge theory. In Poincaré coor-
dinates, (2.26) becomes

x3 = ∓x0 x1 = b± x2 = 0 z = z± , (2.27)

where

b± ≡ ±
Lβ cos a√

1 + β2 ± β sin a
z± ≡

L√
1 + β2 ± β sin a

. (2.28)

By choosing a = 0, we find ourselves colliding objects of equal size; but if a 6= 0, the objects
have different sizes. In short: the relative sizes of colliding objects can be changed by a
conformal transformation! Experiment mostly focuses on colliding equal-sized nuclei, but
it would be interesting to inquire to what extent the collision of unequal-sized objects (say,
gold against copper) would provide experimental tests of the degree to which conformal
symmetry is preserved in the dynamics of a heavy-ion collision. The residual O(2) symme-
try which we mentioned earlier manifests itself as rotations which leave the quadratic form
(X1 sin a−X4 cos a)2 + (X2)2 invariant.

Most of our analysis will take place on H3, which is the intersection of the null surfaces
x+ = 0 and x− = 0 in the Poincaré patch. From (2.25) we see that H3 is determined
by X+ = X− = 0 — almost. If we impose these two conditions on (2.24), we obtain
the equation

−(X−1)2 + (X1)2 + (X2)2 + (X4)2 = −L2 , (2.29)

which describes a two-sheeted, three-dimensional hyperboloid in R3,1. But (2.24) also
implies that X−1 > 0 in the Poincaré patch, and this condition selects the upper sheet.
Sometimes H3 is denoted H+

3 to emphasize this restriction, but we will instead use H3

to mean just the upper sheet. Setting x0 = x3 = 0 in (2.25) leads immediately to a
coordinate transformation between hyperboloid coordinates (X−1, X1, X2, X4) on H3 and
Poincaré coordinates (x1, x2, z).

5It’s worth noting that global AdS5 is usually thought of as the covering space of the hyperboloid (2.24),

which has closed timelike curves.
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To make the residual O(2) symmetry of H3 transparent, we switch to radial coordinates

X−1 =
√
L2 + r2 (2.30a)

X1 = r cos θ cos a− r sin θ cosφ sin a (2.30b)

X2 = r sin θ sinφ (2.30c)

X4 = r cos θ sin a+ r sin θ cosφ cos a , (2.30d)

in which case the line element on H3 takes the form

ds2H3
=

L2

L2 + r2
dr2 + r2(dθ2 + sin2 θdφ2) . (2.31)

In this coordinate system the chordal distance (2.21) takes the form

q± = −1
2

+
√
L2 + r2

√
1 + β2

2L
∓ rβ cos θ

2L
(2.32)

and the O(2) symmetry of the solution is made clear by the invariance of (2.20) under
rotations of φ. (Recall that setting a = 0 corresponds, in the gauge theory, to colliding
objects of equal size, separated in the x1 direction.)

3 Trapped surface computation

If the impact parameter is not too large, then after the collision a black hole will probably
form. To obtain a lower bound on the entropy of the black hole produced in such a collision,
we use the method of [16], which was further developed in [17–19, 39] and adapted to AdS
space in [2, 5–7, 9, 10, 40, 41]. The method is to find a marginally trapped surface S,
composed of two parts: S = S+ ∪ S− where the Si’s are parameterized by

S± =
{
xµ ∈ AdS5 : x∓ = 0, x± = −Ψ±(x1, x2, z)

}
, (3.1)

and then use the area theorem and the Cosmic Censorship conjecture to give a lower bound
on the entropy produced:

S ≥ Strapped ≡
Atrapped

4G5
, (3.2)

where Atrapped is the area of S. The condition that S is a marginally trapped surface
(meaning that it has zero expansion) can be translated into an unusual boundary problem:
the functions Ψ± need to satisfy(

∇2
H3
− 3
L2

)
(Ψ± − Φ±) = 0 (3.3a)

and

Ψ±
∣∣∣
C

= 0 (3.3b)

gab∂aΨ+∂bΨ−
∣∣∣
C

= 4 (3.3c)

– 9 –
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where C is the curve (within the collision plane x+ = x− = 0) on which the surfaces S+

and S− intersect.6 The indices a, b run over the H3 direction, and gab is the inverse of the
metric (2.31).

Solving (3.3) exactly is difficult when the collision is off-center. However, an appro-
priate perturbative expansion leads to an analytically tractable problem. Consider the
parameters

ζ± =
(

2E±z±
G5

L3

)1/3

, (3.4)

and define7

ζ ≡
√
ζ+ζ− . (3.5)

By boosting in the x3 direction, we can change the ratio E+/E− without changing z+ or z−.
In particular, we can choose a boost parameter such that E+ → λE+ and E− → λ−1E−
with λ =

√
E−/E+. After such a boost, we are in a frame where ζ+ = ζ− = ζ. We will

generally prefer to work in such a frame.
In [2] it was noticed that in the case of central collisions of identical objects, i.e.,

β = a = 0, the size of the trapped surface grows linearly in ζ when ζ is large. It is plausible
that the same is true of non-central collisions, at least when the impact parameter β is
held fixed while ζ is made large. Let’s define a new radial coordinate:

ρ ≡ r

ζL
. (3.6)

The metric on H3 takes the form

ds2H3
= L2

[
dρ2

ρ2 + 1/ζ2
+ ζ2ρ2(dθ2 + sin2 θdφ2)

]
. (3.7)

We have already remarked that the off-center collision respects the O(2) symmetry gener-
ated by additive shifts of φ. So the trapped surface must be a surface of revolution in the φ
direction. The curve C must likewise have the O(2) symmetry, which means that its posi-
tion in H3 can be parameterized as ρ = ρC(θ). Because we have chosen to work in a frame
where E+z+ = E−z−, there is an additional Z2 reflection symmetry which interchanges
the shocks by sending θ → π− θ and at the same time x3 → −x3. As consequences of this
symmetry, we have

Ψ−(ρ, θ) = Ψ+(ρ, π − θ) ρC(θ) = ρC(π − θ) . (3.8)

If we define

Lh±(ρ, θ) = Ψ±(ρ, θ)− Φ±(ρ, θ) , (3.9)

6As before, we use the words “curve” and “surface” despite the fact that C has two dimensions and S
has three.

7For comparison with [2], it is useful to note that for central collisions in AdS5 with z+ = z− = L,

ζ3 = 4q(1 + q)(1 + 2q) and x = 2
p
q(1 + q). So when ζ is large, ζ ≈ 2q ≈ x.
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then the functions h± are eigenfunctions of the laplacian on H3:(
∇2
H3
− 3
L2

)
h± =

1
L2

[
ρ2∂2

ρ+3ρ∂ρ−3+
1

ζ2ρ2

(
1

sin θ
∂θ sin θ∂θ + ρ2∂ρ+2ρ∂ρ

)]
h± = 0 .

(3.10a)

The boundary conditions (3.3b) and (3.3c) can be re-expressed as[
h± +

Φ±
L

]
C

= 0 (3.10b)[(
ρ2 +

1
ζ2

)
∂ρ

(
h+ +

Φ+

L

)
∂ρ

(
h− +

Φ−
L

)

+
1

ζ2ρ2
∂θ

(
h+ +

Φ+

L

)
∂θ

(
h− +

Φ−
L

)]
C

= 4 . (3.10c)

The functions h± obey the same symmetry relation as Ψ±: h−(ρ, θ) = h+(ρ, π − θ).
To make (3.10) analytically tractable, we expand

h+(ρ, θ) = h0(ρ, θ) +
1
ζ2
h2(ρ, θ) + . . .

ρC(θ) = ρ0(θ) +
1
ζ2
ρ2(θ) + . . . . (3.11)

The differential equation (3.10a) can now be broken down order-by-order in ζ. At leading
order in ζ we find (

ρ2∂2
ρ + 3ρ∂ρ − 3

)
h0 = 0 . (3.12)

The solution to (3.12) is
h0(ρ, θ) = C0(θ)ρ+D0(θ)ρ−3. (3.13)

The second term on the right hand side of (3.13) can be discarded. Naively, the reason
is that it is singular at ρ = 0. This is an unsatisfactory argument because ζρ = r/L, so
that working in the large ζ regime implies that r must be large. In order to impose the
correct boundary conditions at small ρ we need, for example, to match the small ρ behavior
of (3.13) to the large r asymptotics of the full solution to (3.10). We do this in appendix A
where we find that the naive expectation D0(θ) = 0 holds. Thus,

h0 = C0(θ)ρ. (3.14)

At subleading order in ζ we have(
ρ2∂2

ρ + 3ρ∂ρ − 3
)
h2 = − 1

ρ2

(
ρ2∂2

ρ + 2ρ∂ρ + ∂2
θ + cot θ∂θ

)
h0 . (3.15)

The solution to (3.15) is

h2 = C2(θ)ρ+
1
4ρ
(
∂2
θ + cot θ∂θ + 2

)
C0(θ) . (3.16)
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As was the case for h0, the solution to (3.15) may also include a D2(θ)ρ−3 term. In
appendix A we also show that D2(θ) = 0. One should be able, in principle, to carry
out this procedure to arbitrary order in ζ. We find that at relative order ζ−4 some of
the homogeneous solutions proportional to ρ−3 (which we may call D4(θ) following the
notation in the preceding paragraphs) may not vanish. Additionally, there will also be a
contribution at order ζ−4 log ζ. So going beyond the order shown explicitly in (3.16) seems
to present some new difficulties. Fortunately, for practical purposes, ζ is numerically fairly
large: ζ ∼ 50 or more in the cases we’ll be considering. So we will not concern ourselves
further with higher order corrections, and work only through relative order 1/ζ2.

To determine the remaining integration constant Ci(θ), we need to implement the
boundary conditions (3.10b) and (3.10c). At leading order in ζ, (3.10b) reads

ρ0C0(θ) +
1

2ρ3
0

(√
1 + β2 − β cos θ

)3 = 0 . (3.17)

Plugging this into (3.10c) we get

ρ0(θ) =
1√

1 + β2 sin2 θ
. (3.18)

This is the leading order expression for ρC when ζ � 1. At subleading order we find:

ρC(θ) =
1√

1 + β2 sin2 θ
+
−1 + β2(4 cos(2θ)− 3)− 6β4 sin2 θ

6ζ2(1 + β2 sin2 θ)3/2
+O(ζ−4) . (3.19)

Reading off the volume element on H3 from the metric (3.7), one can compute the area
of the trapped surface S from

Atrapped = 2
∫ 2π

0
dφ

∫ π

0
dθ

∫ ρC(θ)

0
dρ

L3ζ2ρ2 sin θ√
ρ2 + 1/ζ2

. (3.20)

The explicit factor of 2 that multiplies the integral in (3.20) comes from the fact that S
consists of two parts, S+ and S−, each with an area equal to the integral of the H3 volume
element over the region ρ ≤ ρC(θ). Plugging (3.19) into (3.20) and using (3.2), we find
that to leading order at large ζ we have

S ≥ Strapped =
(

4E+E−z+z−
G5/L3

)1/3

π
sinh−1 β

β
√

1 + β2
. (3.21)

An expression for β in terms of the impact parameter b = b+ − b− and the rms sizes z+
and z− of the flattened energy distributions in the boundary theory (see (2.22) and (2.23))
can be obtained from (2.28):

β =
1
2

√
b2 + (z+ − z−)2

z+z−
. (3.22)

Plugging this expression into (3.21), one can obtain an expression for Strapped only in terms
of quantities defined in the boundary CFT. The special case of (3.21) where z+ = z− = z∗
and E+ = E− = E is equivalent to the result (1.2) that we quoted in the introduction.
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Subleading corrections to (3.21) can be straightforwardly worked out from equa-
tions (3.19) and (3.20). One obtains

Strapped = π
L3

G5

[
sinh−1 β

β
√

1 + β2
ζ2 − log ζ −

(
log 2− 2

3
+

(1 + 2β2) sinh−1 β

2β
√

1 + β

)
+O(1/ζ2)

]
,

(3.23)

where ζ is as defined in (3.5). The non-analytic log ζ term in the above expression comes
from the fact that 1/ζ2 acts as a small ρ regulator in the area integral (3.20). We can
estimate that (3.23) will break down when β ∼ ζ, because then the constant term in (3.23)
becomes of the same order as the leading term, so one would expect that higher order terms
in the series will then also be important. If, instead of colliding point-sourced shock waves
in AdS5, we collide shock waves whose sources are spread out in the transverse plane, then
we expect that the trapped surface will be almost unaffected provided it extends over a
much bigger region of H3 than the sources do. There is a precise result along these lines
for head-on collisions [2]; see also the related discussion [41].

The area of the trapped surface was computed numerically in [37] for particular values
of ζ, with z∗ = L. In figure 1 we compare the numerical results of [37] (in the case
where G5E/L

2 = 100, corresponding to ζ ≈ 5.848) to the analytical prediction (3.23). As
can be seen from this figure, equation (3.23) is a good approximation whenever b/L . 4
(corresponding to β . 2), and breaks down for larger values of b. In particular, the
approximate bound (3.23) doesn’t capture the fact that there exists a maximum value
b = bmax above which marginally trapped surfaces of the type considered above no longer
exist. This doesn’t necessarily imply that in collisions with impact parameters larger than
bmax there is no black hole formation, since there could be marginally trapped surfaces
elsewhere. The existence of bmax is however suggestive of an upper limit on the impact
parameter for black hole formation.

The values ζ . 6 used in [37] are smaller than the range we think can be compared
most naturally to heavy-ion collisions in the range of energies attained at RHIC. As we
shall explain in section 4, we prefer values of ζ more than ten times bigger. For such large
ζ, even the first correction to (3.21) is insignificant for the range of b/L we will be interested
in, namely b/L no more than a few.

As one approaches bmax, the flat space analysis of shock-wave collisions described
in [42] suggests that the slope of Strapped(b) becomes infinite. This type of behavior implies
that at b = bmax subleading terms in the series expansion (3.23) are important, and by
the previous discussion, the maximum impact parameter leading to black hole formation
satisfies bmax & ζL. Because ζ ∝ E1/3, a natural expectation is bmax ∼ E1/3 for large
energies. This scaling seems consistent with the observation of [37] that for ζ . 6 one has
bmax ∼ Eα with α ≈ 0.37. Because bmax/ζL ≈ 0.91 according to [37] for ζ = 5.848, and
because the difference between the scaling with energy found there and the one we expect
is fairly small, it is plausible that the estimate bmax ≈ ζL is within a factor of 2 of the
correct answer for ζ larger than a few.
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Figure 1. (Color online.) Comparisons between the numerics of [37] and the analytic for-
mula (3.23). The black dashed curve represents the leading term in (3.23); the solid red curve
corresponds to the first two terms in (3.23); the dotted blue curve represents the expression (3.23),
which is correct up to a term of order O(1/ζ2); the green dots represent the numerical evaluations
used in figure 3 of [37]; lastly, the vertical green line marks the place where, according to [37], the
maximum impact parameter bmax/L occurs. We thank S. Lin and E. Shuryak for providing us with
the results of their numerical evaluations.

4 Entropy production in a strongly coupled conformal field theory

The motivation for our analysis is to gain some insight into entropy production in heavy-
ion collisions. This implies that we need to somehow translate our AdS5 trapped surface
results into expectations for QCD. Any such translation is perilous, because what gravity
calculations in AdS5 are really dual to is a strongly coupled conformal field theory, and QCD
is not such a theory. The perturbative behavior of QCD at high energies is surely relevant
to the earliest stages of a heavy-ion collision, and confinement is obviously relevant for late
stages. Our assumption in attempting to compare AdS5 calculations with heavy ions is
that there is an intermediate regime where QCD is fairly strongly coupled and fairly close
to conformal, and that the dynamics of this intermediate regime is crucial to the production
of entropy. Having stressed that these are assumptions which may fail to some degree, we
will attempt in this section a comparison of the trapped surface calculation (3.21) to data.
Later on in section 5 we attempt to make a quantitative estimate of how a failure of these
assumptions will affect our results.

In order to make such a comparison, we must first fix all the parameters appearing on
the right hand sides of (3.21)–(3.22). We use

L3/G5 = 1.9 , (4.1)

which we obtain by comparing the equation of state of the SYM theory to that of lattice
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QCD, as in [2]. We must also relate E±, z±, b, and S to experimentally measured quantities.
For E± we use the total beam energy, which in the case of RHIC collisions reads

E+ = E− = 197×
√
sNN

2
. (4.2)

The parameters z+ and z− give the rms-energy-density-averaged transverse radius of the
nuclei. A typical energy distribution for the nucleus is given by a Woods-Saxon profile
which has an exponential fall-off. We’ve fixed z± to fit the rms-energy-density-averaged
transverse radius of a gold nucleus resulting from a Woods-Saxon profile,

z+ = z− = 4.3 fm . (4.3)

See [2] for details. Combining (3.22) and (4.3) we obtain

β ≈ 0.12
b

fm
(4.4)

for a gold-gold collision. For
√
sNN = 200 GeV, combining (3.4), (3.5), (4.1), (4.2), and (4.3)

gives ζ ≈ 77. As remarked in section 3, this is large enough that just the leading order
estimate (3.21) can be used for b/L not too large. From here on, we will consider only this
leading order approximation.

Putting everything together, we can rewrite the entropy bound (3.21) as

S ≥ 35000
( √

sNN

200 GeV

)2/3 sinh−1 β

β
√

1 + β2
(4.5)

for gold-gold collisions. As explained in the introduction, the amount of entropy produced
after a collision of two heavy ions may be inferred from a measurement of the total number
of charged particles reaching the detector:

S ≈ 7.5Nch . (4.6)

Combining (4.5) and (4.6), we get

Ncharged ≥ 4700
( √

sNN

200 GeV

)2/3 sinh−1 β

β
√

1 + β2
. (4.7)

Most of the rest of this section is devoted to confronting the simple formula (4.7) with data.
The impact parameter b can be related to the total number of nucleons participating

in the collision, Npart [43]. Our description here of how this is done in the Glauber model
closely follows [44–46]. Each heavy ion is replaced by a distribution of nucleons, which is
proportional to the energy density and is given by a Woods-Saxon profile: see figure 2. We
work with a distribution ρ̂ proportional to energy density but normalized to unity. The
effective distribution in the plane orthogonal to the beam axis (also normalized to unity)
is given by

T̂ (~r) =
∫
ρ̂(z, ~r)dz , (4.8)
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Figure 2. The energy density of a gold nucleus according to the Woods-Saxon profile, ε =
ε0

1+exp[(r−R)/a] , as a function of the radial distance r to the center of the nucleus. The energy
distribution was normalized so that its value at r = 0 is one. For a gold nucleus, the parameters R
and a take the values ε0 = 0.159 GeV/ fm3, R = 6.38 fm, and a = 0.535 fm [47].

where z is the direction of the beam and ~r is a vector in the plane orthogonal to the beam
axis. To determine Npart, one asks how many nucleons would scatter if there were no other
interactions among nucleons other than inelastic nucleon-nucleon scattering, whose cross-
section σNN is measured. In the optical approximation, where one ignores the discreteness
of individual nucleons in the distribution (4.8), the result is

Npart(~b) = NA

∫
T̂A(~r)

(
1−

(
1− T̂B(~r −~b)σNN

)NB
)
d2r

+NB

∫
T̂B(~r)

(
1−

(
1− T̂A(~r −~b)σNN

)NA
)
d2r , (4.9)

where NA and NB are the numbers of nucleons in each nucleus. We took the values of σNN

from [45]. A detailed derivation of (4.9) can be found in [46].
As we have remarked, one usually uses a Woods-Saxon profile to obtain the transverse

distribution (4.8) employed in Glauber model calculations. But the transverse energy
distribution dual to a point-sourced shock wave is instead given by (2.22), which we will
describe as conformal because it preserves an O(3) subgroup of conformal transformations.
It would be more faithful to the AdS5 computation to use the conformal distribution instead
of Woods-Saxon. Perhaps surprisingly, for the energy ranges we are considering both these
profiles give rather similar results. See figure 3. We therefore employed a Woods-Saxon
profile for the Glauber calculations used to compare (4.7) to data.

In figure 4 we compare our lower bound on the entropy as a function of the impact
parameter with the PHOBOS data at

√
sNN = 200 GeV and

√
sNN = 130 GeV, taken

from [27] (see also [48]). Instead of plotting Ncharged in terms of the impact parameter b,
it is more common to plot Ncharged/Npart versus Npart. We have done so in figure 5.
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Figure 3. (Color online.) The impact parameter b as a function of the number of participating
nucleons Npart in a gold-gold collision, as obtained through optical Glauber calculations at

√
sNN =

200 GeV, where σNN = 42 mb. The blue curve is based on the standard Woods-Saxon distribution,
whereas the red curve is based on the conformal distribution, proportional to (2.22). Note that in
going from 130 GeV to 200 GeV the scattering cross section decreases to 41 mb.
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Figure 4. (Color online.) Total number of charged particles Ncharged as a function of impact
parameter b. The data was taken from the PHOBOS experiment [27]. The red curve corresponds
to the lower bound on the number of charged particles which is based on the gauge-gravity dual-
ity (3.21).

The mismatch in b dependence between string theory results and the data is due to
our not handling infrared effects correctly. The problem is that in a conformal theory,
widely separated objects interact more strongly than they do in QCD. When two heavy-
ions collide in the real world, the nucleons which are not in the collision region (spectators)
are not expected to interact. On the other hand, in the collisions we have discussed, energy
distributions which are far apart during the time of the collision will produce entropy. We
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Figure 5. (Color online.) Plots exhibiting the linear dependence of the total number of charged
particles Ncharged on the number of participating nucleons Npart. The data was taken from [27].
The shaded red region shows the allowed values of Ncharged/Npart, based on (3.21).
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Figure 6. (Color online.) Plots exhibiting the linear dependence of the total number of charged
particles Ncharged on the number of participating nucleons Npart. The data was taken from [27].
The shaded red region shows the allowed values of Ncharged/Npart, based on rescaling the right hand

side (4.7) by
(
Npart(b)
2×197

)2/3

as explained in the text.

can mimic the effect of spectators by setting E+ and E− in (4.2) equal to the fraction of the
energy of each nucleus that participates in the collision according to a Glauber analysis. In
other words, we rescale the energy of a collision with impact parameter b by Npart(b)

2×197 , where
Npart(b) is computed via the Glauber model. As a result, the right hand side of (4.7) is

multiplied by
(
Npart(b)
2×197

)2/3
. The results of such a reinterpretation of the collision energy

are shown in figure 6.

While the fit exhibited in figure 6 is in good agreement with experiment, the approach
on which it is based is somewhat ad hoc. A more consistent approach to fitting a holo-
graphic prediction with the data would be to repeat our calculation in a holographic dual
of a confining gauge theory.
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5 Slicing trapped surfaces

In the previous section we saw that the absence of confinement in our holographic model
leads to a spectator problem in off-center collisions: too much energy far from the center
of mass becomes thermalized. We solved this problem by redefining the energy of the
shocks as the energy participating in the collision. We would prefer a solution where total
energy can be cleanly identified between QCD and the five-dimensional bulk, and where the
important non-conformal aspects of QCD are captured holographically. As a first step in
this direction, we discard the parts of the trapped surface which lie outside a “safe” region

zIR > z > zUV . (5.1)

Our rationale for excluding the region z < zUV is that this region corresponds to the
ultraviolet physics of QCD, which is asymptotically free. Partons are nearly free at high
energy scales, so they often pass by one another without producing significant energy
through scattering. Of course, there are hard scattering events, and these will be very
interesting in LHC heavy-ion collisions. We are essentially ignoring such events, or folding
them into the determination of the parameter zUV.

We exclude the region z > zIR because AdS5 gets cut off in the infrared by confinement.
The part of the trapped surface that has z > zIR is not relevant to QCD because it relates
to processes with energy lower than the confinement scale. Entropy production in real QCD
must happen to some extent at energy scales below confinement, but it is presumably a
small effect compared to the entropy production in the deconfined phase provided the total
energy of the collision is large enough.

In order to choose sensible values for zIR and zUV, we first recall that the AdS5-
Schwarzschild solution takes the form

ds2 =
L2

z2

(
−hdt2 + d~x2 +

dz2

h

)
, (5.2)

where h = 1− z4/z4
H and L is the radius of AdS5. The temperature is T = 1/πzH . Based

on this last relation, we associate physics at a scale Λ with the region of AdS5 with

z ≡ 1
πΛ

. (5.3)

For the calculations in this section, we choose the values of zUV and zIR that correspond
through (5.3) to ΛUV = 2 GeV and ΛIR = 0.2 GeV.

In summary: We start with the trapped surfaces obtained in section 3 and intersect
them with the “safe” region (5.1) to obtain a reduced entropy that excludes contributions
from the ultraviolet, where we do not trust supergravity, and the infrared, where the bulk
geometry should be cut off by effects dual to confinement.

In the case of head-on collisions of objects of equal sizes, finding the area of the trapped
surface inside the safe region (5.1) is fairly straightforward due to the O(2) symmetry of the
trapped surface in the x1x2-plane. Collisions which are not head on and/or those between
objects of different sizes, are more challenging to handle. In the rest of this section we set
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z+ = z−, corresponding to equal-sized objects, although it should be possible to generalize
our computations to unequal z+ and z−. We will work at an arbitrary impact parameter
b. We find it convenient to switch to a different coordinate system on H3 defined through

X−1 = L
√

1 + v2
x + v2

y coshh

X1 = L
√

1 + v2
x + v2

y sinhh

X2 = Lvx

X4 = Lvy . (5.4)

These coordinates have previously been used in [49]. When h, vx, and vy are unrestricted,
they cover all of H3 in a single coordinate patch. In fact, the mapping between R3 and H3

given in (5.4) is, up to a global rescaling, a volume-preserving diffeomorphism, as can be
checked by noting that in the (h, vx, vy) coordinates the H3 metric,

ds2H3
=

L2

1 + v2
x + v2

y

[
(1 + v2

y)dv
2
x − 2vxvydvxdvy + (1 + v2

x)dv2
y

]
+ L2(1 + v2

x + v2
y)dh

2 ,

(5.5)

has determinant equal to L6. The O(2) symmetry of the trapped surface manifests itself
as rotations in the X2X4-plane, or as rotations in the vxvy-plane. A constant h section of
the trapped surface is a disk in the vxvy-plane. Keeping only the leading term in (3.19)
and using the coordinate transformations (2.30) and (5.4), we find that the radius of this
disk, v(h), is given by

v(h)2 = 2
1 + β2 + ζ2

1 + 2β2 + cosh(2h)
− 1 . (5.6)

The area of the trapped surface, without cutoffs, is given by

Atrapped = 2
∫ ∞
−∞

dhπv(h)2dh . (5.7)

To implement the UV and IR cutoffs of (5.1) we first need to find out what a surface
of constant z looks like in the (h, vx, vy) coordinate system. Using (2.25) and (5.4) one can
show that this surface is given by

(vx − vcenter
x )2

a2
+

(vy − vcenter
y )2

b2
= 1 , (5.8)

with

(vcenter
x , vcenter

y ) =
(

0,−L
z

(cschh)2
)

a2 =
L2

z2
(cschh)2 − 1

b2 = (cothh)2
[
L2

z2
(cschh)2 − 1

]
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Figure 7. (Color online.) A plot of a trapped surface (left) in the (h, vx, vy) coordinates for a
head-on collision. The bright green circles correspond to surfaces of constant h. The blue surface
(right) corresponds to a surface of constant z, whose constant h slices are ellipses shown in dark
blue. At h = 0, the corresponding ellipse degenerates into a parabola.

for non-vanishing h. Thus, a constant h 6= 0 slice of a constant z surface is an ellipse whose
eccentricity is

e =
1

coshh
. (5.9)

When h = 0 the ellipse degenerates into a parabola symmetric about the vy-axis, as can
be seen from the fact that e = 1 and a =∞ in this case.8 See figure 7.

In figure 8 we’ve plotted the trapped surface (green) together with the z = zUV surface
(blue) and the z = zIR surface (green). Pictorially, we need to compute the volume of
the green region which lies between the blue and red surfaces. In practice, it is easiest to
compute the area of a constant h section Σh of the trapped surface restricted to zUV < z <

zIR and then integrate over h:

A =
∫ ∞
−∞

Vol(Σh)dh (5.10)

where

Σh = {(vx, vy) : (vx, vy, h) ∈ C and zUV < z < zIR}. (5.11)

In figure 8 we show a typical constant-h slice.

8The parameters characterizing the parabola can be obtained from taking appropriate limits of (5.9):

the focal length is given by limh→0 a(1 − e) = L
2z

, and the focal point is located at vx = 0 and vy =

limh→0 v
center
y + ae = − z

2L
.
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Figure 8. (Color online) Plots of the trapped surface together with the UV and IR regions. On
the left we show a plot of the trapped surface (green) in the (h, vx, vy) coordinate system. Some
lines of constant h are lightly colored for emphasis. The UV surface and the IR surface are colored
blue and red, respectively. Lines of constant h 6= 0 on these surfaces are ellipses. On the right we’ve
plotted a constant h section of the trapped surface and the UV and IR cutoff surfaces.

It is straightforward to see that the ellipse in (5.8) intersects the circle given in (5.6)
at the vy coordinate

vint
y =

L

z
−
√

2(1 + β2 + ζ2) coshh√
1 + 2β2 + cosh 2h

. (5.12)

The vx coordinate of the intersection can be computed from either (5.8) or (5.6), but
the resulting formula will not be needed. Let’s denote by AIR

h the two-dimensional area
common to the disk of radius (5.6) and the region z > zIR (which in figure 8 corresponds
to the intersection between the disk and the interior of the inner ellipse) and by AUV

h the
area common to the same disk and the region z > zUV (which in figure 8 corresponds to
the intersection between the disk and the interior of the outer ellipse). The total area of
the trapped surface is then

Aslice = 2
(∫ ∞
−∞

dhAUV
h −

∫ ∞
−∞

dhAIR
h

)
. (5.13)

The quantities AIR
h and AUV

h can be computed analytically for every value of h. If, for
example, the inner (IR) ellipse in figure 8 is contained completely inside the disk, then AIR

h

should just equal the area of the ellipse; if the disk is contained inside the ellipse, then AIR
h

should equal the area of the disk; if the inner ellipse intersects the boundary of the disk (as
drawn in figure 8), one needs to add the part of the area of the ellipse above the horizontal
line passing through the intersection point in figure 8 to the part of the area of the disk
below this intersection point. The explicit expression for Aslice is not very illuminating, so
we won’t reproduce it here.
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Figure 9. Total number of charged particles Ncharged for central Pb-Pb collisions over a range of
energies. The red curve represents the b = 0 limit of the AdS prediction (4.7). The blue curve
represents the prediction of the Landau model (see, for example, section 2.3 of [2]). The brown
dot-dashed curve represents the AdS prediction (5.13) with a UV cutoff at ΛUV = 2 GeV. The blue
dashed curve represents the AdS prediction (5.13) with a UV cutoff at ΛUV = 2 GeV and an IR
cutoff at ΛIR = 0.2 GeV. The black vertical line marks the value of

√
sNN expected to be attained

at the LHC.

What we are interested in is how Sslice ≡ Aslice/4G5 compares with the entropy Strapped

computed from the entire trapped surface. For central collisions, the results are shown in
figure 9, converted to Ncharged using the formula (1.1).9 The UV cutoff doesn’t significantly
decrease the predicted bound on Ncharged at RHIC energies, but as one proceeds to large E,
its effect is dramatic: whereas Strapped ∝ E2/3, we find Sslice ∝ E1/3 in the limit of large E.
The IR cutoff decreases the predicted bound on Ncharged, but not by very much. To obtain
the curves plotted in figure 9, we used L3/G5 = 1.9, z∗ = 4.4 fm, and Ebeam = 208

√
sNN

2 ,
as appropriate for Pb.

Now let us turn to the case of non-zero impact parameter. In figures 10 and 11 we
plotted the lower bound on Ncharged corresponding to S ≥ Sslice for gold-gold collisions
at
√
sNN = 200 GeV and

√
sNN = 130 GeV together with the data from the PHOBOS

experiment [43, 48]. The values for L3/G5, z±, and E used to make these plots are the
ones given in the previous section. Figures 10 and 11 are an improvement relative to the
fit in figures 4 and 5 in the sense that more data points are in the allowed region. Also,
the string theory predictions at larger b are lowered by an incrementally larger factor than
for small b. However, the string theory predictions still show too much entropy produced
in glancing collisions as compared to central collisions. Comparing figure 10 to figure 6, we
conclude that our slicing procedure does not capture the effects of confinement as well as
rescaling the energy did. It may be that a better treatment of the UV and IR cutoffs —

9It should be noted that using (1.1) over the large range of energy shown in figure 9 is not necessarily

justified. Investigations along the lines of [23] based on LHC data should help clarify the relation between

Ncharged and S at higher energies.
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Figure 10. Total number of charged particles Ncharged as a function of impact parameter b. The
data was taken from the PHOBOS experiment [43, 48]. The red curve corresponds to the lower
bound on the number of charged particles which is based on the the dual of a slice of AdS (3.21).
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Figure 11. Plots exhibiting the linear dependence of the total number of charged particles Ncharged

on the number of participating nucleons Npart. The data was taken from [43, 48]. The shaded red
region shows the allowed values of Ncharged/Npart computed via (5.13).

in other words, better control over the non-conformal behavior of the theory — will yield
a better justified fit to the data.

6 Discussion

Our main formal results, summarized in (3.19) and (3.23), are approximate analytic ex-
pressions for the size and shape of a trapped surface produced in off-center collisions of
point-sourced shock waves in AdS5, in a limit where the trapped surface is much bigger
than the radius of curvature of AdS5. The precise limit is ζ � 1 and ζ � β. It is quite
striking that analytic results can be obtained, given that in flat space, the computation of
trapped surfaces is a tricky numerical problem: see for example [42].

When using this formal result to make direct estimates of total multiplicities in heavy-
ion collisions, we need to convert various AdS5 quantities to equivalent QCD observables.
If we interpret the energy of the colliding shocks as the total beam energy, then our results
are in disagreement with the data at impact parameters greater than 4 to 5 fm. But if,
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instead, we interpret the energy of the colliding shocks as the energy participating in the
collision as calculated via the Glauber model, then, as shown in figure 6, agreement with
data is good.

Another challenge to our AdS-based model is the scaling S ∝ E2/3 at high energies:
the power 2/3 is probably too large. We’ve tried to address this problem by slicing off parts
of AdS space. This crude approach is motivated by the idea that entropy production comes
predominantly from processes whose energy scale is above the confinement scale, but not
so far above it as to be substantially suppressed by asymptotic freedom. Independent of
the extent to which the slicing approach is justified, the calculations of section 5 provide
information about where in the transverse H3 space (the slice of AdS5 below the transverse
x1x2-plane) the entropy comes from.

To gain some intuition about the results of the slicing calculations, let’s consider a
head-on collision with z+ = z− = L, E+ = E− = E, and ζ = (2EG5/L

2)1/3, in accord
with (3.4). First let’s consider the shape of the trapped surface in the absence of any
cutoffs. Let zmin and zmax be the minimum and maximum values of z on the trapped
surface, and let x⊥,max be the maximum value of

√
(x1)2 + (x2)2 on the trapped surface.

Straightforward calculations to leading order in large ζ yield

zmin

L
=

1
2ζ

zmax

L
= 2ζ

x⊥,max

L
= ζ . (6.1)

If we compare to a central gold-gold collision at
√
sNN = 200 GeV by setting L = 4.3 fm

and L3/G5 = 1.9, then ζ = 77. (Note that setting L3/G5 = 1.9 makes ζ quite close
to (EL)1/3.) Combining the result (6.1) for zmin with the conversion formula Λ = 1/πz
between depth and energy scale, one finds

Λmax ≡
1

πzmin
≈ 2.2 GeV . (6.2)

In comparing to QCD processes, it is tempting to regard Λmax as the maximum temperature
of the fireball produced in a heavy-ion collision. But the trapped surface is far from being
an equilibrated black hole horizon, so Λmax probably shouldn’t be regarded as the peak
temperature. Instead, it is the maximum energy scale of processes in the fireball that
dominate entropy production. On this interpretation, the result (6.2) doesn’t seem to us
unreasonable in comparison with QCD. What seems more troublesome is the result for
x⊥,max in (6.1): plugging in L = 4.3 fm and ζ = 77 gives

x⊥,max = 330 fm , (6.3)

which, as noted in [37], seems way too high for a heavy-ion collision.
Let’s take a closer look at the distribution of the entropy in the transverse plane. For

a central collision, it is fairly straightforward to calculate the fraction f(x⊥) of the entropy
that lies within the region

(x1)2 + (x2)2 ≤ x2
⊥ . (6.4)

– 25 –



J
H
E
P
1
1
(
2
0
0
9
)
0
5
0

It is interesting to note that although f(x⊥) is non-zero all the way out to x⊥,max = ζL,
its second moment is much smaller:

x⊥,rms ≡

√∫ x⊥,max

0
dx⊥ x

2
⊥f
′(x⊥) ≈ L

√
2 log 2ζ − 3 ≈ L

√
2
3

log 8EL− 3 , (6.5)

where in the last expression we recalled that ζ ≈ (EL)1/3 when L3/G5 = 1.9. We explain
how to obtain (6.5) in appendix B. With parameters as described above, x⊥,rms is roughly
2.7L ≈ 11 fm. Recalling that L is the energy-weighted rms radius of each shock wave,
we see from (6.5) that the entropy-weighted rms radius x⊥,rms is larger only by a modest
factor, even at very large ζ. As we explain in appendix B, for x⊥/L of order unity, the
distribution of entropy in the transverse plane as quantified by f(x⊥) is not so distant
from sensible expectations for QCD. The surprising result (6.3), then, is not disastrous: it
indicates that the tail of the entropy distribution is too long, not that the dominant part
of the entropy distribution is unreasonable.

Although f(x⊥) has a precise meaning on the gravity side of the duality, it is probably
only approximately correct to translate it into the fraction of the entropy in the boundary
theory within a radius x⊥ of the collision point. Indeed, all results describing the position
of the trapped surface in AdS5 should be interpreted with caution when passing to the
field theory side of the gauge-string duality. The trapped surfaces we have constructed
stretch from t = −∞ to t = 0, but it would be obviously at odds with causality to
say that the entropy is produced before the collision. In general, a black hole horizon is
not something one can describe locally in time. It has to do with whether particles in a
region of spacetime can escape to some asymptotic infinity. Trapped surfaces also have
a non-local character: although the differential equation (3.10a) is local, the matching
conditions (3.10b)–(3.10c) are not. The trapped surfaces we have constructed identify a
region of spacetime from which a test particle cannot emerge once it enters — modulo
some conjectural points relating to Cosmic Censorship. In particular, the test particle
can be separated in the transverse (x1, x2) coordinates by as much as x⊥,max and still fall
inside the trapped surface. If we use (6.3), what this says is that a test particle more
than 300 fm away from the colliding nuclei can eventually thermalize with the resulting
fireball. Thermalization of such a distant test particle is impossible in QCD because of
the short-range nature of the interactions. This underscores once again the real differences
between real-world QCD and a strongly coupled conformal field theory.

In appendix B, we show that the IR cutoff lowers x⊥,max from 330 fm to 13.8 fm
in a central collision with the choice of parameters indicated after (6.1). This dramatic
reduction of x⊥,max is associated with less than a 20% reduction in the total entropy. In
addition, x⊥,rms is reduced by the cutoffs from 11 fm to roughly 5 fm for the parameters
described just after (6.1).

In summary: The difficulty we had matching our results to total multiplicity of off-
center collisions indicates that the trapped surface in the dual of a strongly coupled con-
formal field theory has too great a tendency to swallow up regions of spacetime that are
far from the collision. In the conformal field theory, the fireball produced in an off-center
collision has too great a tendency to thermalize with energy far from the collision point.
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Such energy corresponds to the spectators in an off-center heavy-ion collision. We suspect
that this tendency goes hand in hand with excessively long tails of the entropy distribution
in central collisions. Both difficulties would probably be cured in a holographic theory with
a mass gap.
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A Boundary conditions on h±(ρ, θ) at small ρ

In this section we explain why we didn’t include terms of the form Di/ρ
3 in (A.6). The

starting point is the equation satisfied by h+, which for simplicity we’ll denote by h:

(
∇2
H3
− 3
L2

)
h = 0 . (A.1)

Parameterizing H3 by (r, θ, φ) so that the metric is given by (2.31), the most general
solution to (A.1) that is invariant under additive shifts in φ is

h =
∑
`≥0

[
U (`)P`(cos θ)

(
r

L

)`
2F1

(
`− 1

2
,
`+ 3

2
, `+

3
2
,− r

2

L2

)

+ V (`)P`(cos θ)
(
L

r

)`+1

2F1

(
− `

2
− 1, 1− `

2
,
1
2
− `,− r

2

L2

)]
, (A.2)

where P`(x) are the Legendre polynomials, 2F1 is the hypergeometric function, and U (`)

and V (`) are integration constants. Since the hypergeometric functions are regular at r = 0,
it follows that the U -solution is regular at r = 0, while the V -solution is not. The large r
behavior is a bit more complicated:

h =
∑
`≥2

[
U (`)P`(cos θ)

(
a

(`)
−1

r

L
+a(`)

1

L

r
+O(log r/r3)

)
+V (`)P`(cos θ)

(
b
(`)
3

L3

r3
+O(1/r5)

)]

+
[(
U (1) − 2V (1)

) r
L

+
3
4
V (1)L

3

r3
+O(1/r5)

]
+
[(
U (0) + 2V (0)

) r
L

+
1
2

(
U (0) + 2V (0)

) L
r
− 1

8
U (0)L

3

r3
+O(1/r5)

]
, (A.3)
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where

a
(`)
−1 =

21−`Γ
(

1
2 − `

)
√
πΓ(2− `)

a
(`)
1 =

(`+ 2)Γ
(

1
2 − `

)
2`+1
√
πΓ(1− `)

b
(`)
3 =

(−1)`Γ
(

1
2 − `

)
Γ(`+ 3)

2`+3
√
π

. (A.4)

As explained in section (3), equation (A.1) can also be solved in a coordinate system
where H3 is parameterized by (ρ, θ, φ) and the metric is (3.7). The parameter ζ ≡ r/ρL

appearing in (3.7) is a large expansion parameter. By expanding

h(ρ, θ) = h0(ρ, θ) +
1
ζ2
h2(ρ, θ) + · · · , (A.5)

one obtains10

h0 = C0(θ)ρ+D0(θ)
1
ρ3

(A.6a)

h2 = C2(θ)ρ+D2(θ)
1
ρ3

+
1
4ρ
(
∂2
θ + cot θ∂θ + 2

)
C0(θ)

− 1
12ρ5

(∂2
θ + cot θ∂θ + 6)D0(θ) . (A.6b)

The matched asymptotic expansion technique implies that the small ρ limit of (A.6)
needs to be matched onto the large r limit of (A.2) (equation (A.3)) after plugging in
r = ρLζ in (A.3). To do so, we first write

C2k =
∑
`≥0

C
(`)
2k P`(cos θ) D2k =

∑
`≥0

D
(`)
2k P`(cos θ) . (A.7)

We find

U (`) =
a−1

ζ

(
C

(`)
0 +

1
ζ2
C

(`)
2 + · · ·

)
for ` ≥ 2

U (1) =
1
ζ

(
C

(1)
0 +

1
ζ2
C

(1)
2 + · · ·

)
+

8ζ3

3

(
D

(1)
0 +

1
ζ2
D

(1)
2 + · · ·

)
U (0) = −8ζ3

(
D

(0)
0 +

1
ζ2
D

(0)
2 + · · ·

)
V (`) = b3ζ

3

(
D

(`)
0 +

1
ζ2
D

(`)
2 + · · ·

)
for ` ≥ 2

V (1) =
4ζ3

3

(
D

(1)
0 +

1
ζ2
D

(1)
2 + · · ·

)
V (0) =

1
2ζ

(
C

(0)
0 +

1
ζ2
C

(0)
2 + · · ·

)
+ 4ζ3

(
D

(0)
0 +

1
ζ2
D

(0)
2 + · · ·

)
. (A.8)

10Actually, the next order term in (A.5) is of order ζ−4 log ζ, so not all terms in this expansion take the

form (A.6).
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One can arrive at the first and fourth relations above by comparing the a(`)
−1 and b(`)3 terms

in (A.3) to (A.6a) and the first two terms in (A.6b). The a(`)
1 term in (A.3) is the same as

the third term in (A.6b) to leading order, but this is just a consistency check. A similar
consistency check consists of comparing the fourth term in (A.6b) to the O(1/r5) term that
multiplies V (`) which was not written explicitly in (A.3). The other relations in (A.8) can
be found by making similar comparisons of the terms in the second and third lines of (A.3)
to (A.6).

The main application of this matching procedure is that if one requires regularity of
the solution at r = 0, one necessarily has D(`)

0 = D
(`)
2 = 0 for all `. To see this, note that

regularity implies V (`) = 0. From the fourth and fifth relations in (A.8), this immediately
implies that D(`)

0 = D
(`)
2 = 0 for ` ≥ 1. The same is true for ` = 0 since the D(0)

0 and D
(0)
2

terms in the last equation in (A.8) dominate over the C(0)
2k terms at large ζ. Note that from

the form of the formulas in (A.8) one may infer that D(`)
2k = 0 for all ` ≥ 1 and all k, but

it is not clear, for example, that D(0)
4 should vanish.

B The transverse size of the trapped surface

In this appendix we consider the computation of the fraction f(x⊥) of the area of the
trapped surface formed in a head-on collision that falls within the region (x1)2+(x2)2 ≤ x2

⊥.
For simplicity we set z+ = z− = L and E+ = E− = E. Throughout, we work to leading
order in large ζ = (2EG5/L

2)1/3.
The trapped surface has the familiar O(3) symmetry that preserves the point of impact

on the transverse space H3. The region (x1)2 + (x2)2 ≤ x2
⊥ preserves an O(2) subgroup

of this symmetry. As in section 5, it is advantageous to use (h, vx, vy) coordinates in
the presence of a residual O(2) symmetry. But because the particular O(2) we are now
considering is a different subgroup of O(3) from the one preserved in off-center calculations,
we use a different identification from (5.4):

X−1 = L
√

1 + v2
x + v2

y coshh =
z

2

(
1 +

L2 + (x1)2 + (x2)2

z2

)
X1 = Lvx = L

x1

z

X2 = Lvy = L
x2

z

X4 = −L
√

1 + v2
x + v2

y sinhh =
z

2

(
−1 +

L2 − (x1)2 − (x2)2

z2

)
. (B.1)

The trapped surface covers the region of H3 with

(X1)2 + (X2)2 + (X4)2 ≤ ζ2L2 , (B.2)

to leading order in ζ. Denoting v =
√
v2
x + v2

y , we see that (B.2) may be recast as

v ≤ v(h) ≡
√
ζ2 sech2 h− tanh2 h , (B.3)
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where h must be restricted to the range −h0 ≤ h ≤ h0, with

h0 = sinh−1 ζ ≈ log 2ζ . (B.4)

Next, we observe that

(x1)2 + (x2)2

L2
=

(X1)2 + (X2)2

(X−1 +X4)2
= e2h

(
1− 1

1 + v2
x + v2

y

)
. (B.5)

This implies that the inequality (x1)2 + (x2)2 ≤ x2
⊥ is equivalent to

v ≤ x⊥/L√
e2h − x2

⊥/L
2

or h ≤ log
x⊥
L
. (B.6)

Because the volume form on H3 is just L3dh∧dvx∧dvy, the fraction f(x⊥) can be computed
as the ratio of the volume in the (h, vx, vy) coordinate space satisfying both (B.3) and (B.6)
to the volume satisfying only (B.3). At large ζ, one finds

f ′(x⊥) ≈ 2L2x⊥
(L2 + x2

⊥)2

√
1−

x2
⊥

ζ2L2
. (B.7)

From (B.7) it follows that

1
L2

∫ x⊥,max

0
dx⊥ x

2
⊥f
′(x⊥) ≈ 2 log 2ζ − 3 , (B.8)

which gives the result quoted in (6.5). It is worth noting that f ′(x⊥) falls off as 1/x3
⊥ but

is cut off at x⊥,max = ζL by the square root that appears in (B.7).
To go further, let us define the distribution of entropy over the transverse plane as

dStrapped

dx1dx2
=
Strapped

2πx⊥
f ′(x⊥) . (B.9)

Using (B.7), we find that at large ζ,

1
Strapped

dStrapped

dx1dx2
∝ 1

(L2 + x2
⊥)2

√
1−

x2
⊥

ζ2L2
. (B.10)

If we assume that

d2Strapped

dx1dx2
∼ Q2

s , (B.11)

where Qs is the saturation scale,11 then we find

Qs(x⊥) ∝ ζ

L2 + x2
⊥

(
1−

x2
⊥

ζ2L2

)1/4

, (B.12)

11The saturation scale is a characteristic scale of transverse momenta of gluons in the early stages of a

highly relativistic collision of nuclei.
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which again holds only in the limit of large ζ. This formula shows that the saturation
scale has approximately a 1/(L2 + x2

⊥) dependence which is cut off at x⊥ = x⊥,max = ζL,
where Qs(x⊥,max) = 0. It is striking that essentially the same spatial dependence, Qs ∝
1/(R2 +x2

⊥), has been advocated from the perspective of the color glass condensate [50]. A
difference is that the parameter R of [50] is expected to grow logarithmically with energy,
due to spread of the saturating region into the outer corona, whereas in our case, L is simply
a constant. The slow growth of the rms size (6.5) of the trapped surface is due mostly
to the lengthening of the power-law tail. In summary: transverse distributions reveal a
qualitative, or even semi-quantitative, similarity between trapped surfaces in AdS5 and the
CGC approach; but the reasons for slow growth of transverse size with energy differ.

In the CGC approach, the saturation scale at x⊥ = 0 is expected to grow as a slow
power: Q2

s ∝ Eλ where λ ≈ 0.28 (see for example [51]). Using (B.12) and the scaling
ζ ∼ E1/3, we find instead Q2

s ∝ E2/3 up to logarithmic corrections. This discrepancy
probably owes to the fact that the QCD scaling Qs ∝ Eλ is essentially a perturbative
result, and hence distant from the strong coupling regime in which we work. Clearly, this
is closely related to the expectation in CGC treatments that multiplicities will scale as
a smaller power of E than the E2/3 that we find. Thus we hold out some hope that an
appropriate treatment of the ultraviolet physics, beyond the supergravity approximation,
might lead to a more systematically accurate account of saturation physics as well as total
multiplicity in a holographic framework.

Including IR and UV cutoffs changes somewhat the story presented above. A surface
of constant z is described by

v =

√
e2hL2

z2
− 1 , (B.13)

and a careful account of the intersections of the IR and UV cutoffs with the trapped surface
and the x⊥ cutoff (B.6) yields

x⊥,max ≈
√

2LzIRζ −
L2 + z2

IR

2
√

2LzIRζ
(B.14)

in the limit of large ζ. Our preferred choice of zIR, corresponding to ΛIR = 0.2 GeV, reduces
the value of x⊥,max from 330 fm in absence of cutoffs to 13.8 fm with cutoffs. In figure 12

we show the lower bound d2Strapped

dx1dx2 for the entropy density in the case of gold-gold collisions
at
√
sNN = 130 GeV, 200 GeV, and 500 GeV. In making these plots we set L3/G5 = 1.9,

L = 4.3 fm, ΛIR = 0.2 GeV, and ΛUV = 2 GeV as discussed in sections 4 and 5. The IR
and UV cutoffs alter somewhat the scaling d2Strapped

dx1dx2 ∼ 1/(L2 +x2
⊥)2 at the values of

√
sNN

considered above, but this scaling becomes more and more accurate in the intermediate x⊥
region at larger ζ. At x⊥ = 0, d2Strapped

dx1dx2 approaches a ζ-independent constant in the limit
of large ζ. Assuming again that the entropy density is proportional to Q2

s, one can see that
this scaling is significantly different from the result Qs ∼ ζ ∼ E1/3 in absence of cutoffs,
and from the CGC scaling Qs ∼ E0.14. What this shows is that changing the way we deal
with UV physics does indeed affect significantly the scaling of Qs with energy at x⊥ = 0.
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Figure 12. The distribution of the trapped surface entropy in the transverse plane for
√
sNN =

130 GeV, 200 GeV, and 500 GeV, in the presence of UV and IR cutoffs. We used L3/G5 = 1.9,
L = 4.3 fm, ΛIR = 0.2 GeV, and ΛUV = 2 GeV, as appropriate for a comparison to gold-gold
collisions.

Our approach of entirely ignoring the ultraviolet region of AdS5 (the region where z <
zUV) is probably too abrupt. Better would be to have some understanding of how entropy
production weakens gradually as one departs from the regime of validity of supergravity.
Such an understanding seems far out of reach starting from first principles in string theory.
It may be that CGC results on the scaling of Qs provide some hints about the correct
stringy dynamics of the ultraviolet region of the bulk in the true holographic dual of QCD.

References

[1] B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757
(2005) 28 [nucl-ex/0410022] [SPIRES].

[2] S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock
waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [SPIRES].

[3] P.C. Aichelburg and R.U. Sexl, On the gravitational field of a massless particle, Gen. Rel.
Grav. 2 (1971) 303.

[4] T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys. B
253 (1985) 173 [SPIRES].

– 32 –

http://dx.doi.org/10.1016/j.nuclphysa.2005.03.084
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.084
http://arxiv.org/abs/nucl-ex/0410022
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=NUCL-EX/0410022
http://dx.doi.org/10.1103/PhysRevD.78.066014
http://arxiv.org/abs/0805.1551
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.1551
http://dx.doi.org/10.1007/BF00758149
http://dx.doi.org/10.1007/BF00758149
http://dx.doi.org/10.1016/0550-3213(85)90525-5
http://dx.doi.org/10.1016/0550-3213(85)90525-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B253,173


J
H
E
P
1
1
(
2
0
0
9
)
0
5
0

[5] M. Hotta and M. Tanaka, Shock wave geometry with nonvanishing cosmological constant,
Class. Quant. Grav. 10 (1993) 307 [SPIRES].

[6] K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys. B 436 (1995)
721 [hep-th/9408169] [SPIRES].

[7] J. Podolsky and J.B. Griffiths, Impulsive waves in de Sitter and Anti-de Sitter space-times
generated by null particles with an arbitrary multipole structure, Class. Quant. Grav. 15
(1998) 453 [gr-qc/9710049] [SPIRES].

[8] G.T. Horowitz and N. Itzhaki, Black holes, shock waves and causality in the AdS/CFT
correspondence, JHEP 02 (1999) 010 [hep-th/9901012] [SPIRES].

[9] R. Emparan, Exact gravitational shockwaves and planckian scattering on branes, Phys. Rev.
D 64 (2001) 024025 [hep-th/0104009] [SPIRES].

[10] G. Arcioni, S. de Haro and M. O’Loughlin, Boundary description of Planckian scattering in
curved spacetimes, JHEP 07 (2001) 035 [hep-th/0104039] [SPIRES].

[11] K. Kang and H. Nastase, High energy QCD from planckian scattering in AdS and the
Froissart bound, Phys. Rev. D 72 (2005) 106003 [hep-th/0410173] [SPIRES].

[12] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in
AdS/CFT: from shock waves to four-point functions, JHEP 08 (2007) 019 [hep-th/0611122]
[SPIRES].

[13] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]
[SPIRES].

[14] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical
string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

[15] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [SPIRES].

[16] R. Penrose, unpublished (1974).

[17] P.D. D’Eath and P.N. Payne, Gravitational radiation in high speed black hole collisions. 1.
Perturbation treatment of the axisymmetric speed of light collision, Phys. Rev. D 46 (1992)
658 [SPIRES].

[18] P.D. D’Eath and P.N. Payne, Gravitational radiation in high speed black hole collisions. 2.
Reduction to two independent variables and calculation of the second order news function,
Phys. Rev. D 46 (1992) 675 [SPIRES].

[19] P.D. D’Eath and P.N. Payne, Gravitational radiation in high speed black hole collisions. 3.
Results and conclusions, Phys. Rev. D 46 (1992) 694 [SPIRES].

[20] J. Sollfrank and U.W. Heinz, Resonance decays and entropy balance in relativistic nuclear
collisions, Phys. Lett. B 289 (1992) 132 [SPIRES].

[21] C. Nonaka, B. Müller, S.A. Bass and M. Asakawa, Possible resolutions of the D-paradox,
Phys. Rev. C 71 (2005) 051901 [nucl-th/0501028] [SPIRES].

[22] B. Müller and K. Rajagopal, From entropy and jet quenching to deconfinement?, Eur. Phys.
J. C 43 (2005) 15 [hep-ph/0502174] [SPIRES].

– 33 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD,10,307
http://dx.doi.org/10.1016/0550-3213(94)00573-W
http://dx.doi.org/10.1016/0550-3213(94)00573-W
http://arxiv.org/abs/hep-th/9408169
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9408169
http://dx.doi.org/10.1088/0264-9381/15/2/018
http://dx.doi.org/10.1088/0264-9381/15/2/018
http://arxiv.org/abs/gr-qc/9710049
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9710049
http://dx.doi.org/10.1088/1126-6708/1999/02/010
http://arxiv.org/abs/hep-th/9901012
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9901012
http://dx.doi.org/10.1103/PhysRevD.64.024025
http://dx.doi.org/10.1103/PhysRevD.64.024025
http://arxiv.org/abs/hep-th/0104009
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0104009
http://dx.doi.org/10.1088/1126-6708/2001/07/035
http://arxiv.org/abs/hep-th/0104039
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0104039
http://dx.doi.org/10.1103/PhysRevD.72.106003
http://arxiv.org/abs/hep-th/0410173
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0410173
http://dx.doi.org/10.1088/1126-6708/2007/08/019
http://arxiv.org/abs/hep-th/0611122
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0611122
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9802109
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9802150
http://dx.doi.org/10.1103/PhysRevD.46.658
http://dx.doi.org/10.1103/PhysRevD.46.658
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D46,658
http://dx.doi.org/10.1103/PhysRevD.46.675
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D46,675
http://dx.doi.org/10.1103/PhysRevD.46.694
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D46,694
http://dx.doi.org/10.1016/0370-2693(92)91374-I
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B289,132
http://dx.doi.org/10.1103/PhysRevC.71.051901
http://arxiv.org/abs/nucl-th/0501028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=NUCL-TH/0501028
http://dx.doi.org/10.1140/epjc/s2005-02256-3
http://dx.doi.org/10.1140/epjc/s2005-02256-3
http://arxiv.org/abs/hep-ph/0502174
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0502174


J
H
E
P
1
1
(
2
0
0
9
)
0
5
0

[23] S. Pal and S. Pratt, Entropy production at RHIC, Phys. Lett. B 578 (2004) 310
[nucl-th/0308077] [SPIRES].

[24] J. Cleymans, M. Stankiewicz, P. Steinberg and S. Wheaton, The origin of the difference
between multiplicities in e+e− annihilation and heavy ion collisions, nucl-th/0506027
[SPIRES].

[25] F. Karsch, Lattice QCD at high temperature and density, Lect. Notes Phys. 583 (2002) 209
[hep-lat/0106019] [SPIRES].

[26] L.D. Landau, On the multiparticle production in high-energy collisions, Izv. Akad. Nauk
SSSR Ser. Fiz. 17 (1953) 51.

[27] PHOBOS collaboration, B.B. Back et al., Charged-particle pseudorapidity distributions in
Au+Au collisions at s1/2NN = 62.4 GeV, Phys. Rev. C 74 (2006) 021901 [nucl-ex/0509034]
[SPIRES].

[28] S.S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole,
Phys. Rev. D 78 (2008) 086007 [arXiv:0804.0434] [SPIRES].

[29] U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and gluon plasma dynamics
in improved holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899]
[SPIRES].

[30] K. Kang and H. Nastase, Heisenberg saturation of the Froissart bound from AdS-CFT, Phys.
Lett. B 624 (2005) 125 [hep-th/0501038] [SPIRES].

[31] S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions: II. The
stress tensor on the boundary, Phys. Rev. D 77 (2008) 085014 [arXiv:0711.0736] [SPIRES].

[32] D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS5, JHEP 08
(2008) 027 [arXiv:0803.3226] [SPIRES].

[33] J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling heavy ion collisions in AdS/CFT,
JHEP 07 (2008) 100 [arXiv:0805.2927] [SPIRES].

[34] H. Nastase, AdS-CFT and the RHIC fireball, Prog. Theor. Phys. Suppl. 174 (2008) 274
[arXiv:0805.3579] [SPIRES].

[35] U. Sperhake, V. Cardoso, F. Pretorius, E. Berti and J.A. Gonzalez, The high-energy collision
of two black holes, Phys. Rev. Lett. 101 (2008) 161101 [arXiv:0806.1738] [SPIRES].

[36] PHOBOS collaboration, B.B. Back et al., Centrality and energy dependence of
charged-particle multiplicities in heavy ion collisions in the context of elementary reactions,
Phys. Rev. C 74 (2006) 021902 [SPIRES].

[37] S. Lin and E. Shuryak, Grazing collisions of gravitational shock waves and entropy production
in heavy ion collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [SPIRES].

[38] J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric collision of two shock waves in
AdS5, JHEP 05 (2009) 060 [arXiv:0902.3046] [SPIRES].

[39] D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions,
Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [SPIRES].

[40] H. Nastase, On high energy scattering inside gravitational backgrounds, hep-th/0410124
[SPIRES].

– 34 –

http://dx.doi.org/10.1016/j.physletb.2003.10.054
http://arxiv.org/abs/nucl-th/0308077
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=NUCL-TH/0308077
http://arxiv.org/abs/nucl-th/0506027
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=NUCL-TH/0506027
http://arxiv.org/abs/hep-lat/0106019
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0106019
http://dx.doi.org/10.1103/PhysRevC.74.021901
http://arxiv.org/abs/nucl-ex/0509034
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=NUCL-EX/0509034
http://dx.doi.org/10.1103/PhysRevD.78.086007
http://arxiv.org/abs/0804.0434
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0434
http://dx.doi.org/10.1103/PhysRevLett.101.181601
http://arxiv.org/abs/0804.0899
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0899
http://dx.doi.org/10.1016/j.physletb.2005.08.001
http://dx.doi.org/10.1016/j.physletb.2005.08.001
http://arxiv.org/abs/hep-th/0501038
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0501038
http://dx.doi.org/10.1103/PhysRevD.77.085014
http://arxiv.org/abs/0711.0736
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.0736
http://dx.doi.org/10.1088/1126-6708/2008/08/027
http://dx.doi.org/10.1088/1126-6708/2008/08/027
http://arxiv.org/abs/0803.3226
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.3226
http://dx.doi.org/10.1088/1126-6708/2008/07/100
http://arxiv.org/abs/0805.2927
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.2927
http://dx.doi.org/10.1143/PTPS.174.274
http://arxiv.org/abs/0805.3579
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.3579
http://dx.doi.org/10.1103/PhysRevLett.101.161101
http://arxiv.org/abs/0806.1738
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1738
http://dx.doi.org/10.1103/PhysRevC.74.021902
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,C74,021902
http://dx.doi.org/10.1103/PhysRevD.79.124015
http://arxiv.org/abs/0902.1508
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.1508
http://dx.doi.org/10.1088/1126-6708/2009/05/060
http://arxiv.org/abs/0902.3046
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.3046
http://dx.doi.org/10.1103/PhysRevD.66.044011
http://arxiv.org/abs/gr-qc/0201034
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0201034
http://arxiv.org/abs/hep-th/0410124
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0410124


J
H
E
P
1
1
(
2
0
0
9
)
0
5
0
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